Publications by authors named "T S Whittam"

We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens.

View Article and Find Full Text PDF

Background: Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.

Results: The phylogeny of E.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E.

View Article and Find Full Text PDF

We examined O157:non-H7 strains isolated from various sources and geographical locations and found 15/57 strains to carry eae alleles, including alpha, beta, epsilon and kappa/delta, suggesting that these strains may be prevalent. All strains were serologically and genetically confirmed to be O157, but none were the H7 serotype or carried any trait virulence factors of the Escherichia coli O157:H7 serotype. Genetic H typing of the eae-positive strains showed that the alpha-eae-bearing strain was H45, while the beta- and epsilon-eae strains were H16 and the kappa/delta-eae strains were H39.

View Article and Find Full Text PDF

Background: Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a food and waterborne pathogen, can be classified into nine phylogenetically distinct lineages, as determined by single nucleotide polymorphism genotyping. One lineage (clade 8) was found to be associated with hemolytic uremic syndrome (HUS), which can lead to kidney failure and death in some cases, particularly young children. Another lineage (clade 2) differs considerably in gene content and is phylogenetically distinct from clade 8, but caused significantly fewer cases of HUS in a prior study.

View Article and Find Full Text PDF