A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.
View Article and Find Full Text PDFEnantiospecific effects play an uprising role in chemistry and technical applications. Chiral molecular networks formed by self-assembly processes at surfaces can be imaged by scanning probe microscopy (SPM). Low contrast and high noise in the topography map often interfere with the automatic image analysis using classical methods.
View Article and Find Full Text PDFThin-film stacks | consisting of a ferromagnetic-metal layer and a heavy-metal layer are spintronic model systems. Here, we present a method to measure the ultrabroadband spin conductance across a layer between and at terahertz frequencies, which are the natural frequencies of spin-transport dynamics. We apply our approach to MgO tunneling barriers with thickness = 0-6 Å.
View Article and Find Full Text PDF