Background: Extracellular vesicles (EVs) play a crucial role in intraspecies and interspecies communication, significantly influencing physiological and pathological processes. Outer membrane vesicles (OMVs) secreted by Gram-negative bacteria are rich in components from the parent cells and are important for bacterial communication, immune evasion, and pathogenic mechanisms. However, the extraction and purification of OMVs face numerous challenges due to their small size and heterogeneity.
View Article and Find Full Text PDFThe first total syntheses of four isoflavone glucosides, tectoridin (), tectoridin A (), tectorigenin 7--β-d-glucopyranosyl-12--β-d-glucopyranoside (), and isotectroigenin 7--β-d-glucopyranoside (), have been accomplished. Key steps in our synthetic approach include a regioselective halogenation reaction, followed by methanolysis to introduce the -OCH group into isoflavone frameworks and a PTC-promoted stereoselective glycosidation to establish glycosidic bonds. The synthesized isoflavone glucosides (-) and their corresponding aglycones ( and ) were evaluated for anti-inflammatory activity against nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 β (IL-1β) in lipopolysaccharide (LPS)-induced RAW264.
View Article and Find Full Text PDFBackground And Hypothesis: Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment.
View Article and Find Full Text PDFBackground: Upper limb activity following stroke is low, which may limit recovery. We investigated whether a virtually-delivered upper limb program, that included a wearable device with reach-to-grasp feedback, would increase upper limb activity after stroke.
Methods: This was a parallel-group, assessor-blinded, randomized control trial conducted at 6 sites across 5 provinces of the CanStroke Recovery Trials Platform between 2020 to 2022.
Transactivation response (TAR) RNA-binding protein 2 (TRBP) plays a critical role in microRNA (miRNA) biosynthesis, with aberrant expression linked to various cancers. Previously, we identified , a phenyloxazole derivative that disrupts the TRBP-Dicer interaction in hepatocellular carcinoma (HCC). In this study, we optimized this scaffold and substituent, leading to the discovery of , a 2-phenylthiazole-5-carboxylic acid derivative with nanomolar inhibitory activity (EC = 0.
View Article and Find Full Text PDF