Publications by authors named "T S Papina"

Anthropogenic emissions of the toxic heavy metal mercury (Hg) have substantially increased atmospheric Hg levels during the 20th century compared to preindustrial times. However, on a regional scale, atmospheric Hg concentration or deposition trends vary to such an extent during the industrial period that the consequences of recent Asian emissions on atmospheric Hg levels are still unclear. Here we present a 320 year Hg deposition history for Central Asia, based on a continuous high-resolution ice-core Hg record from the Belukha glacier in the Siberian Altai, covering the time period 1680-2001.

View Article and Find Full Text PDF

The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980.

View Article and Find Full Text PDF

Human activities have significantly altered atmospheric Pb concentrations and thus, its geochemical cycle, for thousands of years. Whereas historical Pb emissions from Western Europe, North America, and Asia are well documented, there is no equivalent data for Eastern Europe. Here, we present ice-core Pb concentrations for the period 1680-1995 from Belukha glacier in the Siberian Altai, assumed to be representative of emissions in Eastern Europe and the Altai.

View Article and Find Full Text PDF

Ice cores from glaciers situated near anthropogenic sources of air pollution provide important archives of the emissions of species with short atmospheric lifetimes. Here we present the history of atmospheric Pu fallout reconstructed from an ice core from the Belukha glacier in the Siberian Altai. Fourteen ice core samples covering the time period 1941-1986 were selected for Pu analysis, chemically processed, and measured using accelerator mass spectrometry.

View Article and Find Full Text PDF