Publications by authors named "T S Lo"

Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.

View Article and Find Full Text PDF

The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.

View Article and Find Full Text PDF

The thermocatalytic hydrogenation of CO2 to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO2 hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In2O3 nanosheets. The Ir1-Px/In2O3 catalyst achieves an impressive ethanol yield of 3.

View Article and Find Full Text PDF

Introduction: Age-related macular degeneration (AMD) is a prevalent eye disease among middle-aged and older adults. AMD leaves the patient with irreversible deteriorating vision, which profoundly impacts their daily lives and psychosocial well-being. Given the limited studies addressing the psychosocial needs of adults with AMD and, in particular, using an expressive arts-based intervention (EXABI) as an intervention, this study aims to investigate the effectiveness of such an intervention in enhancing the psychosocial well-being of adults with AMD.

View Article and Find Full Text PDF

The development of healable polymers represents a significant advancement in materials science, addressing the need for sustainable solutions that can reduce waste and prolong the lifespan of various products. For the development of healable polymer fabrics, however, there are still unsolved issues because of limited healing cycles and poor mechanical properties. In this work, we present intrinsically healable materials for the creation of stretchable, healable fabrics.

View Article and Find Full Text PDF