Publications by authors named "T S Forrest"

Correction for 'A submersible probe with in-line calibration and a symmetrical reference element for continuous direct nitrate concentration measurements' by Tara Forrest , , 2023, , 519-530, https://doi.org/10.1039/D2EM00341D.

View Article and Find Full Text PDF

Recent work has shown that ion-selective components may be transferred from nanoemulsions (NEs) to endow polymeric membranes with ion-selective sensing properties. This approach has also been used for nanopipette electrodes to achieve single-entity electrochemistry, thereby sensing the ion-selective response of single adhered nanospheres. To this date, however, the mechanism and rate of component transfer remain unclear.

View Article and Find Full Text PDF

Current methods to monitor nitrate levels in freshwater systems are outdated because they require expensive equipment and manpower. Punctual sampling on the field or at a fixed measuring station is still the accepted monitoring procedure and fails to provide real-time estimation of nitrate levels. Continuous information is of crucial importance to evaluate the health of natural aquatic systems, which can strongly suffer from a nitrogen imbalance.

View Article and Find Full Text PDF

Traditional pH glass electrodes are designed in a symmetrical manner to guarantee the most reliable and reproducible potentiometric measurements possible. Solid-contact and other pH probes not based on glass membranes are desirable because they allow for new types of applications, may be mass fabricated and less prone to breakage. Unfortunately, however, they introduce electrochemical asymmetry because the reference element used in the reference electrode compartment is now different.

View Article and Find Full Text PDF

In potentiometric sensing, the preparation of the electrodes preceding a measurement is often the most time-consuming step. Eliminating the conditioning process can significantly speed up the preparation procedure, but it can also compromise the need for proper pre-equilibration of the membrane. We propose here a symmetric setup to address this challenge with an identical indicator and reference elements measured against each other, thereby compensating for potential drift.

View Article and Find Full Text PDF