Publications by authors named "T S Deisboeck"

: Inflammation is caused by an excess of Sodium ions inside the cell. This generates a variation in the cell's membrane electric potential, becoming a steady state from a thermodynamic viewpoint. : This paper introduces a thermodynamic approach to inflammation based on the fundamental role of the electric potential of the cell membrane, introducing an analysis of the effect of heat transfer related to the inflammation condition.

View Article and Find Full Text PDF

The constructal law is used to improve the analysis of the resonant heat transfer in cancer cells. The result highlights the fundamental role of the volume/area ratio and its role in cancer growth and invasion. Cancer cells seek to increase their surface area to facilitate heat dissipation; as such, the tumour expansion ratio declines as malignant cells start to migrate and the cancer expands locally and systemically.

View Article and Find Full Text PDF

We present a novel thermodynamic approach to the epigenomics of cancer metabolism. Here, any change in a cancer cell's membrane electric potential is completely irreversible, and as such, cells must consume metabolites to reverse the potential whenever required to maintain cell activity, a process driven by ion fluxes. Moreover, the link between cell proliferation and the membrane's electric potential is for the first time analytically proven using a thermodynamic approach, highlighting how its control is related to inflow and outflow of ions; consequently, a close interaction between environment and cell activity emerges.

View Article and Find Full Text PDF

A great variety of complex physical, natural and artificial systems are governed by statistical distributions, which often follow a standard exponential function in the bulk, while their tail obeys the Pareto power law. The recently introduced [Formula: see text]-statistics framework predicts distribution functions with this feature. A growing number of applications in different fields of investigation are beginning to prove the relevance and effectiveness of [Formula: see text]-statistics in fitting empirical data.

View Article and Find Full Text PDF

With the advent of personalized medicine, design and development of anti-cancer drugs that are specifically targeted to individual or sets of genes or proteins has been an active research area in both academia and industry. The underlying motivation for this approach is to interfere with several pathological crosstalk pathways in order to inhibit or at the very least control the proliferation of cancer cells. However, after initially conferring beneficial effects, if sub-lethal, these artificial perturbations in cell function pathways can inadvertently activate drug-induced up- and down-regulation of feedback loops, resulting in dynamic changes over time in the molecular network structure and potentially causing drug resistance as seen in clinics.

View Article and Find Full Text PDF