Publications by authors named "T Russel Raj"

Background: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD), increasing risk from 3-12-fold relative to the common ε3 allele. Seminal studies have revealed that age-related changes in blood-CNS communication regulate cognitive function. More recently, youth-associated blood-borne proteins revitalize the aged brain, improving hippocampal function and increasing adult neurogenesis and dendritic spine plasticity.

View Article and Find Full Text PDF

Background: Previous Alzheimer's disease GWAS studies were mostly based on the European population, and the β-amyloid (Aβ) status was not considered. We performed a meta-GWAS using East Asian and European genomics data and performed prediction of Aβ status using the identified variant. We utilized single-cell transcriptome data to identify the differentially expressed gene that is affected by the variant.

View Article and Find Full Text PDF

Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method.

View Article and Find Full Text PDF

Objective: Recent work has bolstered the possibility that peripheral changes may be relevant to Alzheimer's disease pathogenesis in the brain. While age-associated blood-borne proteins have been targeted to restore function to the aged brain, it remains unclear whether other dysfunctional systemic states can be exploited for similar benefits. Here, we investigate whether APOE allelic variation or presence of brain amyloid are associated with plasma proteomic changes and the molecular processes associated with these changes.

View Article and Find Full Text PDF

The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation (gruyere), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization.

View Article and Find Full Text PDF