Aims: The precision medicine approach of tailoring treatment to the individual characteristics of each patient has been a great success in monogenic diabetes subtypes, highlighting the importance of accurate clinical and genetic diagnoses of the type of diabetes. We sought to describe three unique cases of childhood-onset diabetes in whom skeletal manifestations led to the revelation of a rare type of diabetes. METHODS : Case-scenarios and review of the literature.
View Article and Find Full Text PDFBackground: Physical growth during childhood and adolescence is influenced by both genetic and environmental factors. Heritability, the proportion of phenotypic variance explained by genetic factors, has been demonstrated for stature and weight status. The aim of this study was to explore the heritability of body composition.
View Article and Find Full Text PDFObjective: To explore the body composition of pediatric patients referred for endocrine evaluation.
Methods: This real-life observational study conducted between January 2018 and January 2020 included 10 001 clinic visits of 3500 children and adolescents; first visits of 5 to 18-year-old patients were included. Anthropometric data, blood pressure levels, pubertal status, and bioelectrical impedance analysis (BIA, Tanita MC-780 MA) were extracted from medical files.
Microfluidic paper-based analytical devices (μPADs) rely on capillary flow to achieve filling, mixing and delivery of liquids. We investigate the use of electroosmotic (EO) pumping as a mechanism for dynamic control of capillary flow in paper-based devices. The applied voltage can accelerate or decelerate the baseline capillary-driven velocity, as well as be used to create a tunable valve that reversibly switches the flow on and off in an electrically controlled manner.
View Article and Find Full Text PDFWe present a novel microfluidic paper-based analytical device (μPAD) which utilizes the native high electroosmotic flow (EOF) in nitrocellulose to achieve stationary isotachophoresis (ITP) focusing. This approach decouples sample accumulation from the length of the channel, resulting in significant focusing over short channel lengths. We provide a brief theory for EOF-balanced ITP focusing under continuous injection from a depleting reservoir and present the design of a short (7 mm) paper-based microfluidic channel, which allows a 200 μL sample to be processed in approximately 6 min, resulting in a 20 000-fold increase in concentration - a full order of magnitude improvement compared to previous paper-based ITP devices.
View Article and Find Full Text PDF