Publications by authors named "T Roscioli"

Article Synopsis
  • This study identifies a new type of autosomal recessive intellectual disability linked to genetic variants in the GTF3C3 gene, which is essential for proper RNA polymerase III activity.
  • Researchers employed various methods, including exome sequencing and Drosophila models, to analyze the effects of GTF3C3 variants found in twelve affected individuals from seven families.
  • The results showed that the variants lead to significant functional losses in the gene, correlating with symptoms like intellectual disability, motor issues, seizures, and brain structure abnormalities.
View Article and Find Full Text PDF

Background: Genomic sequencing technology allows for identification of reproductive couples with an increased chance, as compared with that in the general population, of having a child with an autosomal recessive or X-linked genetic condition.

Methods: We investigated the feasibility, acceptability, and outcomes of a nationwide, couple-based genetic carrier screening program in Australia as part of the Mackenzie's Mission project. Health care providers offered screening to persons before pregnancy or early in pregnancy.

View Article and Find Full Text PDF

Purpose: To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program.

Methods: Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel.

View Article and Find Full Text PDF
Article Synopsis
  • Sequence-based genetic testing finds causative variants in about 50% of cases of developmental and epileptic encephalopathies (DEEs), but DNA methylation changes in these cases have not been thoroughly explored.
  • This study analyzed genome-wide DNA methylation in blood samples from 582 individuals with unresolved DEEs, identifying rare methylation patterns and potential genetic causes in 12 of these cases.
  • The research highlights the effectiveness of DNA methylation analysis in diagnosing DEEs, showing a 2% diagnostic yield, and provides insights into the CHD2 gene's pathophysiology using advanced sequencing methods.
View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies RNU4-2, a non-coding RNA gene, as a significant contributor to syndromic NDD, revealing a specific 18-base pair region with low variation that includes variants found in 115 individuals with NDD.
  • * RNU4-2 is highly expressed in the developing brain, and its variants disrupt splicing processes, indicating that non-coding genes play a crucial role in rare disorders, potentially aiding in the diagnosis of thousands with NDD worldwide.
View Article and Find Full Text PDF