Publications by authors named "T Remetter"

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP.

View Article and Find Full Text PDF

We present a combined theoretical and experimental study of ultrafast wave-packet dynamics in the dissociative ionization of H_{2} molecules as a result of irradiation with an extreme-ultraviolet (XUV) pulse followed by an infrared (IR) pulse. In experiments where the duration of both the XUV and IR pulses are shorter than the vibrational period of H_{2};{+}, dephasing and rephasing of the vibrational wave packet that is formed in H_{2};{+} upon ionization of the neutral molecule by the XUV pulse is observed. In experiments where the duration of the IR pulse exceeds the vibrational period of H_{2};{+} (15 fs), a pronounced dependence of the H;{+} kinetic energy distribution on XUV-IR delay is observed that can be explained in terms of the adiabatic propagation of the H_{2};{+} wave packet on field-dressed potential energy curves.

View Article and Find Full Text PDF

A train of attosecond pulses, synchronized to an infrared (IR) laser field, is used to create a series of electron wave packets (EWPs) that are below the ionization threshold in .helium. The ionization probability is found to strongly oscillate with the delay between the IR and attosecond fields twice per IR laser cycle.

View Article and Find Full Text PDF

We use semiconductor (Si) and metallic (Al, Zr) transmission filters to shape, in amplitude and phase, high-order harmonics generated from the interaction of an intense titanium sapphire laser field with a pulsed neon gas target. Depending on the properties of the filter, the emitted attosecond pulses can be optimized in bandwidth and/or pulse length. We demonstrate the generation of attosecond pulses centered at energies from 50 to 80 eV, with bandwidths as large as 45 eV and with pulse durations compressed to 130 as.

View Article and Find Full Text PDF

A novel multilayer mirror was designed and fabricated based on a recently developed three-material technology aimed both at reaching reflectivities of about 20% and at controlling dispersion over a bandwidth covering photon energies between 35 and 50 eV. The spectral phase upon reflection was retrieved by measuring interferences in a two-color ionization process using high-order harmonics produced from a titanium: sapphire laser. We demonstrate the feasibility of designing and characterizing phase-controlled broadband optics in the extreme-ultraviolet domain, which should facilitate the manipulation of attosecond pulses for applications.

View Article and Find Full Text PDF