Publications by authors named "T Ramachandran"

Self-assembled gold nanoparticles (Au-NPs) possess distinctive properties that are highly desirable in diverse nanotechnological applications. This study meticulously explores the size-dependent behavior of Au-NPs under an electric field, specifically focusing on sizes ranging from 5 to 40 nm, and their subsequent assembly into 2D monolayers on an n-type silicon substrate. The primary objective is to refine the assembly process and augment the functional characteristics of the resultant nanostructures.

View Article and Find Full Text PDF

Noble 2D monolayers of gold nanoparticles (Au-NPs) have garnered significant attention due to their unique physicochemical properties, which are instrumental in various technological applications. This review delves into the intricate physical chemistry underlying the formation of Au-NP monolayers, highlighting key interactions such as electrostatic forces, van der Waals attractions, and ligand-mediated stabilization. The discussion extends to the size- and shape-dependent assembly processes of these NP monolayers, elucidating how nanoparticle dimensions and morphologies influence monolayer formation and stability.

View Article and Find Full Text PDF
Article Synopsis
  • Wound healing is crucial for restoring tissue and there's a need for better treatments, with zinc oxide nanoparticles showing potential benefits like antimicrobial and regenerative properties, combined with β-chitosan, which has superior bioactivity from squid pens.
  • The study involved extracting and characterizing β-chitosan, along with synthesizing zinc oxide nanoparticles using various advanced techniques to understand their properties and applications.
  • Adult zebrafish were used as a model to test the effectiveness of β-chitosan and zinc oxide nanoparticles in promoting wound healing, comparing the results with control groups treated with saline.
View Article and Find Full Text PDF

A wax-patterned paper analytical device (µPAD) has been developed for point-of-care colourimetric testing of serum glutamic oxaloacetic transaminase (SGOT). The detection method was based on the transamination reaction of aspartate with α-ketoglutarate, leading to the formation of oxaloacetate which reacts with the reagent Fast Blue BB salt and forms a cavern pink colour. The intensity of the cavern pink colour grows as the concentration of SGOT increases.

View Article and Find Full Text PDF

Due to their distinctive security characteristics, all-solid-state batteries are seen as a potential technology for the upcoming era of energy storage. The flexibility of nanomaterials shows enormous potential for the advancement of all-solid-state batteries' exceptional power and energy storage capacities. These batteries might be applied in many areas such as large-scale energy storage for power grids, as well as in the creation of foldable and flexible electronics, and portable gadgets.

View Article and Find Full Text PDF