Publications by authors named "T Rahn"

Background: Bacteriophages are known modulators of community composition and activity in environmental and host-associated microbiomes. However, the impact single phages have on bacterial community dynamics under viral predation, the extent and duration of their effect, are not completely understood. In this study, we combine morphological and genomic characterization of a novel marine phage, isolated from the Baltic sponge Halichondria panicea, and report on first attempts of controlled phage-manipulation of natural sponge-associated microbiomes.

View Article and Find Full Text PDF

A new member of the family Flavobacteriaceae (termed Hal144) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144 16S rRNA gene sequence revealed similarities from 94.

View Article and Find Full Text PDF

Despite various roles of phosphatidic acid (PA) in cellular functions such as lipid homeostasis and vesicular trafficking, there is a lack of high-affinity tools to study PA in live cells. After analysis of the predicted structure of the LNS2 domain in the lipid transfer protein Nir1, we suspected that this domain could serve as a novel PA biosensor. We created a fluorescently tagged Nir1-LNS2 construct and then performed liposome binding assays as well as pharmacological and genetic manipulations of HEK293A cells to determine how specific lipids affect the interaction of Nir1-LNS2 with membranes.

View Article and Find Full Text PDF

Plastics have quickly become an integral part of modern life. Due to excessive production and improper waste disposal, they are recognized as contaminants present in practically all habitat types. Although there are several polymers, polyethylene terephthalate (PET) is of particular concern due to its abundance in the environment.

View Article and Find Full Text PDF

The present study is dedicated to the evaluation of the mechanical properties of an additively manufactured (AM) aluminum alloy and their dependence on temperature and build orientation. Tensile test samples were produced from a standard AlSi10Mg alloy by means of the Laser Powder Bed Fusion (LPBF) or Laser Beam Melting (LBM) process at polar angles of 0°, 45° and 90°. Prior to testing, samples were stress-relieved on the build platform for 2 h at 350 °C.

View Article and Find Full Text PDF