Pediatr Allergy Immunol
November 2016
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2007
A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures.
View Article and Find Full Text PDFWe describe in this communication a set of functional perl script utilities for use in peptide mass spectral database searching and proteomics experiments, known as the Wildcat Toolbox. These are all freely available for download from our laboratory Web site (http://proteomics.arizona.
View Article and Find Full Text PDFDiatoms are unicellular eucaryotic algae with cell walls containing silica, intricately and ornately structured on the nanometer scale. Overall silica structure is formed by expansion and molding of the membrane-bound silica deposition vesicle. Although molecular details of silica polymerization are being clarified, we have limited insight into molecular components of the silica deposition vesicle, particularly of membrane-associated proteins that may be involved in structure formation.
View Article and Find Full Text PDF