J Signal Process Syst
March 2022
We present an automatic non-invasive way of detecting cough events based on both accelerometer and audio signals. The acceleration signals are captured by a smartphone firmly attached to the patient's bed, using its integrated accelerometer. The audio signals are captured simultaneously by the same smartphone using an external microphone.
View Article and Find Full Text PDFWe present an experimental investigation into the effectiveness of transfer learning and bottleneck feature extraction in detecting COVID-19 from audio recordings of cough, breath and speech. This type of screening is non-contact, does not require specialist medical expertise or laboratory facilities and can be deployed on inexpensive consumer hardware such as a smartphone. We use datasets that contain cough, sneeze, speech and other noises, but do not contain COVID-19 labels, to pre-train three deep neural networks: a CNN, an LSTM and a Resnet50.
View Article and Find Full Text PDFThe automatic discrimination between the coughing sounds produced by patients with tuberculosis (TB) and those produced by patients with other lung ailments.We present experiments based on a dataset of 1358 forced cough recordings obtained in a developing-world clinic from 16 patients with confirmed active pulmonary TB and 35 patients suffering from respiratory conditions suggestive of TB but confirmed to be TB negative. Using nested cross-validation, we have trained and evaluated five machine learning classifiers: logistic regression (LR), support vector machines, k-nearest neighbour, multilayer perceptrons and convolutional neural networks.
View Article and Find Full Text PDFWe present a machine learning based COVID-19 cough classifier which can discriminate COVID-19 positive coughs from both COVID-19 negative and healthy coughs recorded on a smartphone. This type of screening is non-contact, easy to apply, and can reduce the workload in testing centres as well as limit transmission by recommending early self-isolation to those who have a cough suggestive of COVID-19. The datasets used in this study include subjects from all six continents and contain both forced and natural coughs, indicating that the approach is widely applicable.
View Article and Find Full Text PDF