Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome.
View Article and Find Full Text PDFWe report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof.
View Article and Find Full Text PDFIn December 2017, one of the largest wildfires in California history, the Thomas Fire, created a large smoke and ash plume that extended over the northeastern Pacific Ocean. Here, we explore the impact of Thomas Fire ash deposition on seawater chemistry and the growth and composition of natural microbial communities. Experiments conducted in coastal California waters during the Thomas Fire revealed that leaching of ash in seawater resulted in significant additions of dissolved nutrients including inorganic nitrogen (nitrate, nitrite and ammonium), silicic acid, metals (iron, nickel, cobalt and copper), organic nitrogen and organic carbon.
View Article and Find Full Text PDFEuropean ash, Fraxinus excelsior is facing the double threat of ongoing devastation by the invasive fungal pathogen, Hymenoscyphus fraxineus and the imminent arrival of the non-native emerald ash borer (EAB), Agrilus planipennis. The spread of EAB which is currently moving westwards from European Russia and Ukraine into central Europe, poses an additional substantial threat to European ash, F. excelsior.
View Article and Find Full Text PDFPlants rely on cross-resistance traits to defend against multiple, phylogenetically distinct enemies. These traits are often the result of long co-evolutionary histories. Biological invasions can force naïve plants to cope with novel, coincident pests, and pathogens.
View Article and Find Full Text PDF