Publications by authors named "T R Kissel"

The presence of autoantibodies is a defining feature of many autoimmune diseases. The number of unique autoantibody clones is conceivably limited by immune tolerance mechanisms, but unknown due to limitations of the currently applied technologies. Here, we introduce an autoantigen-specific liquid chromatography-mass spectrometry-based IgG1 Fab profiling approach using the anti-citrullinated protein antibody (ACPA) repertoire in rheumatoid arthritis (RA) as an example.

View Article and Find Full Text PDF

IgG secreted by B cells carry asparagine N(297)-linked glycans in the fragment crystallizable (Fc) region. Changes in Fc glycosylation are related to health or disease and are functionally relevant, as IgG without Fc glycans cannot bind to Fcɣ receptors or complement factors. However, it is currently unknown whether ɣ-heavy chain (ɣHC) glycans also influence the function of membrane-bound IgG-B-cell receptors (BCR) and thus the outcome of the B-cell immune response.

View Article and Find Full Text PDF

Many autoimmune diseases are characterized by B cells that mistakenly recognize autoantigens and produce antibodies toward self-proteins. Current therapies aim to suppress the immune system, which is associated with adverse effects. An attractive and more specific approach is to target the autoreactive B cells selectively through their unique B-cell receptor (BCR) using an autoantigen coupled to an effector molecule able to modulate the B-cell activity.

View Article and Find Full Text PDF

Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies.

View Article and Find Full Text PDF