Publications by authors named "T R Gengenbach"

Objectives: Driveline infections are a major complication of ventricular assist device (VAD) therapy. A newly introduced Carbothane driveline has preliminarily demonstrated anti-infective potential against driveline infections. This study aimed to comprehensively assess the anti-biofilm capability of the Carbothane driveline and explore its physicochemical characteristics.

View Article and Find Full Text PDF

Solid-state sensing platforms are desirable for the development of reusable sensors to promote public health measures such as testing for drinking water contamination. A bioinspired metal-organic framework (MOF)-based material has been developed by imitating metal-protein interactions in biological systems to attain high sensitivity and selectivity to Pb through fluorescence sensing. A zirconium terephthalate-type framework (also known as NH-UiO-66) was modified with both gold nanoparticles and thiol-functionalized carbon dots to give HS-C/Au()/UiO-66 composites with different Au content () and were subsequently adapted into films that show extraordinary sensitivity to Pb.

View Article and Find Full Text PDF

The electrochemical synthesis of ammonia at ambient temperature and pressure has the potential to replace the conventional process for the production of ammonia. However, the low ammonia yield and poor long-term stability of catalysts for the synthesis of ammonia hinders the application of this technology. Herein, we endeavored to tackle this challenge by synthesizing 3-D vertical graphene (VG) on Ni foam a one-step, low-temperature plasma process, which offered high conductivity and large surface area.

View Article and Find Full Text PDF

Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is shown to be a powerful technique for the sensing of low-molecular-weight compounds, including drugs and their metabolites. Surface modification of DIOS surfaces is required to increase analytical performance and ensure stability. However, common wet chemical modification techniques use fluorosilanes, which are less suitable for high-throughput manufacturing and analytical repeatability.

View Article and Find Full Text PDF

3D/2D hybrid perovskite systems have been intensively investigated to improve the stability of perovskite solar cells (PSCs), whereas undesired crystallization of 2D perovskite during the film formation process could undermine the structural stability of 2D perovskite materials, which causes serious hysteresis of PSCs after aging. This issue is, however, rarely studied. The stability study for 3D/2D hybrid systems to date is all under the one-direction scan, and the lack of detailed information on the hysteresis after aging compromises the credibility of the stability results.

View Article and Find Full Text PDF