Purpose: This study aims to develop a free-breathing cardiac DTI method with fast and robust motion correction.
Methods: Two proposed image registration-based motion correction (MOCO) strategies, MOCO and MOCO, were applied to diffusion-weighted images acquired with M2 diffusion gradients under free-breathing. The effectiveness of MOCO was assessed by tracking epicardium pixel positions across image frames.
Objective: Identify microbial and microbiota-associated metabolites in monozygotic (MZ) and dizygotic (DZ) twins discordant for type 1 diabetes (T1D) to gain insight into potential environmental factors that may influence T1D.
Research Design And Methods: Serum samples from 39 twins discordant for T1D were analyzed using a semi-targeted metabolomics approach via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS). Statistical analyses identified significant metabolites (p < 0.
High-throughput metabolomics data provide a detailed molecular window into biological processes. We consider the problem of assessing how association of metabolite levels with individual (sample) characteristics, such as sex or treatment, depend on metabolite characteristics such as pathways. Typically, this is done using a two-step process.
View Article and Find Full Text PDFDiverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses.
View Article and Find Full Text PDFReproducibility in untargeted metabolomics data processing remains a significant challenge due to software limitations and the complex series of steps required. To address these issues, we developed Nextflow4MS-DIAL, a reproducible workflow for liquid chromatography-mass spectrometry (LC-MS) metabolomics data processing, validated with publicly available data from MetaboLights (MTBLS733). Nextflow4MS-DIAL automates LC-MS data processing to minimize human errors from manual data handling.
View Article and Find Full Text PDF