Publications by authors named "T R Denison"

Adaptive value-guided decision-making requires weighing up the costs and benefits of pursuing an available opportunity. Though neurons across frontal cortical-basal ganglia circuits have been repeatedly shown to represent decision-related parameters, it is unclear whether and how this information is coordinated. To address this question, we performed large-scale single-unit recordings simultaneously across 5 medial/orbital frontal and basal ganglia regions as rats decided whether to pursue varying reward payoffs available at different effort costs.

View Article and Find Full Text PDF

Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation (VNS), deep brain stimulation of the thalamus, and responsive neurostimulation (RNS). Across populations of patients, all deliver reductions in seizure load and SUDEP risk, yet do so variably, and the improvements seem incremental rather than transformative.

View Article and Find Full Text PDF

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Advancements in wearable sensor technologies and the digitization of medical records have contributed to the unprecedented ubiquity of biomedical time series data. Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care by improving long-term monitoring capabilities, facilitating early disease detection and intervention, as well as promoting personalized healthcare delivery. However, accessing extensively labeled datasets to train data-hungry deep learning models encounters many barriers, such as long-tail distribution of rare diseases, cost of annotation, privacy and security concerns, data-sharing regulations, and ethical considerations.

View Article and Find Full Text PDF