J Cardiovasc Dev Dis
February 2025
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by structural abnormalities, arrhythmias, and a spectrum of genetic and clinical manifestations. Clinically, ARVC is structurally distinguished by right ventricular dilation due to increased adiposity and fibrosis in the ventricular walls, and it manifests as cardiac arrhythmias ranging from non-sustained ventricular tachycardia to sudden cardiac death. Its prevalence has been estimated to range from 1 in every 1000 to 5000 people, with its large range being attributed to the variability in genetic penetrance from asymptomatic to significant burden.
View Article and Find Full Text PDF[This retracts the article DOI: 10.1016/j.heliyon.
View Article and Find Full Text PDFAtherosclerosis, a condition characterized by the accumulation of lipids and a culprit behind cardiovascular events, has long been studied. However, in recent years, there has been an increase in interest in its initiation, with researchers shifting focus from traditional pathways involving the vascular infiltration of oxidized lipids and towards the novel presence of chronic inflammatory pathways. The accumulation of pro-inflammatory cytokines, in combination with the activation of transcription factors, creates a positive feedback loop that drives the creation and progression of atherosclerosis.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are commonly used in cancer research due to their unique physical and optical properties. However, current AuNP synthesis methods often involve cytotoxic cationic surfactants like cetyltrimethyl ammonium bromide (CTAB). Tedious CTAB replacement methodologies have been used to increase the biocompatibility, further increasing the complexity of synthesizing biocompatible AuNPs limiting their biomedical applications.
View Article and Find Full Text PDFIn this communication, we have described a simple and efficient, catalyst free and solvent-free protocol for the continuous flow synthesis of rhodamine B dyes developed from 3-diethyl amino phenol and phthalic anhydride. Nearly 95% conversion was achieved within 12 min using a jacketed single screw reactor. This method is further used for the synthesis of six derivatives with 70-84% yield, which can be compared to 85% yield from a 1-hour long batch synthesis involving a catalyst.
View Article and Find Full Text PDF