Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.
View Article and Find Full Text PDFThe breaking of time-reversal symmetry (TRS) in the normal state of kagome superconductors AVSb stands out as a significant feature, but its tunability is unexplored. Using low-energy muon spin rotation and local field numerical analysis, we study TRS breaking as a function of depth in single crystals of RbVSb (with charge order) and Cs(VTa)Sb (without charge order). In the bulk of RbVSb (>33 nm from the surface), we observed an increase in the internal magnetic field width in the charge-ordered state.
View Article and Find Full Text PDFStrongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena.
View Article and Find Full Text PDFTwo-dimensional magnetic materials can exhibit new magnetic properties due to the enhanced spin fluctuations that arise in reduced dimension. However, the suppression of the long-range magnetic order in two dimensions due to long-wavelength spin fluctuations, as suggested by the Mermin-Wagner theorem, has been questioned for finite-size laboratory samples. Here we study the magnetic properties of a dimensional crossover in superlattices composed of the antiferromagnetic LaFeO and SrTiO that, thanks to their large lateral size, allowed examination using a sensitive magnetic probe - muon spin rotation spectroscopy.
View Article and Find Full Text PDFThe interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBiTe and an antiferromagnetic iron chalcogenide FeTe.
View Article and Find Full Text PDF