Publications by authors named "T Printemps"

This paper introduces a novel denoising method for TEM-ASTAR™ Diffraction Pattern (DP) datasets, termed LAT-PCA (Local Automatic Thresholding - Principal Component Analysis). This approach enhances the established PCA algorithm by partitioning the 4D dataset (a 2D map of 2D DPs) into localized windows. Within these windows, PCA identifies a basis where the physical signal predominantly resides in the higher-order principal components.

View Article and Find Full Text PDF

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations.

View Article and Find Full Text PDF

Er clustering plays a major role in hindering sufficient optical gain in Er-doped Si materials. For porous Si, the long-standing failure to govern the clustering has been attributed to insufficient knowledge of the several, concomitant and complex processes occurring during the electrochemical Er-doping. We propose here an alternative road to solve the issue: instead of looking for an equilibrium between Er content and light emission using 1-2% Er, we propose to significantly increase the electrochemical doping level to reach the filling the porous silicon pores with luminescent Er-rich material.

View Article and Find Full Text PDF

In this contribution, we propose a protocol for analysis and accurate reconstruction of nanoporous materials by atom probe tomography (APT). The existence of several holes in porous materials makes both the direct APT analysis and reconstruction almost inaccessible. In the past, a solution has been proposed by filling pores with electron beam-induced deposition.

View Article and Find Full Text PDF

Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography.

View Article and Find Full Text PDF