Publications by authors named "T Potocar"

, a soil-born oomycete, is an effective biological control agent exhibiting antagonistic and parasitic activity against pathogenic fungi. This study is the first attempt to characterize its surface properties and to apply models of physicochemical interactions (thermodynamic, DLVO and XDLVO) to quantify its adhesion properties to a model material, represented by magnetic beads (MB). The predictions of interaction models were based on experimental data (contact angles, zeta potentials, size).

View Article and Find Full Text PDF

Objective: Marine actinomycetes from the genus Salinispora have an unexploited biotechnological potential. To accurately estimate their application potential however, data on their cultivation, including biomass growth kinetics, are needed but only incomplete information is currently available.

Results: This work provides some insight into the effect of temperature, salinity, nitrogen source, glucose concentration and oxygen supply on growth rate, biomass productivity and yield of Salinispora tropica CBN-440.

View Article and Find Full Text PDF

In this study, a novel harvesting emulsion (HEM) consisting of cooking oil in an aqueous solution of cetyltrimethylammonium bromide (CTAB) was tested for the harvesting of a technologically important microalga, Chlorella vulgaris. The influence of HEM dose, biomass and bovine serum albumin (BSA) (model interferer compound) on harvesting efficiency (E) were studied. The HEM E was over 90% at pH 10 (0.

View Article and Find Full Text PDF

Objective: Desalination of cheese whey by electrodialysis yields saline wastewater (SWW). The goal was to test this as the basis of a culture medium and to prove experimentally the concept that it was a suitable resource for heterotrophic cultivation of the freshwater green microalga Chlorella vulgaris.

Results: Optimization of glucose concentration, nitrogen source and medium salinity for microalgal growth was first carried out in defined medium (DM) and shake flasks.

View Article and Find Full Text PDF

Acidothermophilic bacteria of the genus Alicyclobacillus are frequent contaminants of fruit-based products. This study is the first attempt to characterize the physico-chemical surface properties of two Alicyclobacillus sp. and quantify their adhesion disposition to model materials [diethylaminoethyl (DEAE), carboxyl- and octyl-modified magnetic beads] representing materials with different surface properties used in the food industry.

View Article and Find Full Text PDF