Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.
View Article and Find Full Text PDFTwo high-resolution structures have been obtained for dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima in its unliganded state, and in its ternary complex with the cofactor NADPH and the inhibitor, methotrexate. While the overall fold of the hyperthermophilic enzyme is closely similar to monomeric mesophilic dihydrofolate reductase molecules, its quaternary structure is exceptional, in that T. maritima dihydrofolate reductase forms a highly stable homodimer.
View Article and Find Full Text PDFBackground: Dihydroneopterin triphosphate (H2NTP) is the central substrate in the biosynthesis of folate and tetrahydrobiopterin. Folate serves as a cofactor in amino acid and purine biosynthesis and tetrahydrobiopterin is used as a cofactor in amino acid hydroxylation and nitric oxide synthesis. In bacteria, H2NTP enters the folate biosynthetic pathway after nonenzymatic dephosphorylation; in vertebrates, H2NTP is used to synthesize tetrahydrobiopterin.
View Article and Find Full Text PDFThe enzyme 6-pyruvoyl tetrahydropterin synthase (PTPS) catalyses the second step in the de novo biosynthesis of tetrahydrobiopterin, the conversion of dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin. The Zn and Mg-dependent reaction includes a triphosphate elimination, a stereospecific reduction of the N5-C6 double bond and the oxidation of both side-chain hydroxyl groups. The crystal structure of the inactive mutant Cys42Ala of PTPS in complex with its natural substrate dihydroneopterinetriphosphate was determined at 1.
View Article and Find Full Text PDF