The surface of gold nanorods (Au NRs) has been appropriately engineered to achieve a suitable interface for bioconjugation with horse heart cytochrome (HCc). HCc, an extensively studied and well-characterized protein, represents an ideal model for nanoparticle (NP)-protein conjugation studies because of its small size, high stability, and commercial availability. Here, the native state of the protein has been demonstrated for the first time, by means of Raman spectroscopy, to be retained upon conjugation with the anisotropic Au nanostructures, thus validating the proposed protocol as specifically suited to mostly preserve the plasmonic properties of the NRs and to retain the structure of the protein.
View Article and Find Full Text PDFThermo-sensitive liquid crystals may result, for some aspects, good host materials for plasmonic nanoparticles. In particular they are suitable to study and measure the temperature variations produced by photo-induced plasmonic joule effect in the metallic nanoparticles. Combining the properties of liquid crystals and metallic nanoparticles, allows to measure temperature variations in different ways by exploiting the optical properties of thermotropic liquid crystals: In a first attempt, by combining nematic liquid crystals and spherical metallic nanoparticles, we have predicted and measured temperature changes, under a suitable (resonant) optical illumination, by measuring the photo-thermal induced birefringence variation.
View Article and Find Full Text PDFBackground: On-demand preexposure prophylaxis may reduce one's risk of HIV acquisition; however, it is unclear if individuals with a very low frequency of HIV exposures are conferred adequate protection. We evaluated a novel approach dubbed HIV postexposure prophylaxis-in-pocket ("PIP"), for individuals with a low frequency of high-risk HIV exposures.
Setting: Two HIV clinics in Toronto, Canada, managing HIV prevention cases.
The stability of Chlorophyll a in water during prolonged exposure, at room temperature, to a neon lamp has been investigated by means of UV-vis and fluorescence spectroscopies. In addition, the Chlorophyll a (photo)stability evaluation in presence of suitable carriers has been performed in order to investigate its reactivity under the same conditions, for possible and future applications in Antimicrobial Photodynamic Therapy. Cetyltrimethylammonium chloride was chosen to solubilize Chlorophyll a in water.
View Article and Find Full Text PDF