Publications by authors named "T Pioch"

We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R). The quaternization of P4VP with Br-R was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection.

View Article and Find Full Text PDF

Chemical sensing methodology based on electrochemical impedance spectroscopy (EIS) targeting analytes in aqueous samples on functionalized single-walled carbon nanotube (SWCNT) is reported. The SWCNT in contact with electrolyte shows unique impedance spectra that cannot be analyzed with classical equivalent circuit models. Inspired by the charge transport property of mixed ionic-electronic conductors, we propose an equivalent circuit based on transmission line model (TLM), by which the impedance of the CNT-electrolyte system can be analyzed to track down all the equivalent circuit parameters.

View Article and Find Full Text PDF

Decarbonization of the energy system is a key aspect of the energy transition. Energy storage in the form of chemical bonds has long been viewed as an optimal scheme for energy conversion. With advances in systems engineering, hydrogen has the potential to become a low cost, low emission, energy carrier.

View Article and Find Full Text PDF

Addressing the challenge of efficient drug delivery to the lungs, a nano-structured, microparticulate carrier system with defined and customizable dimensions has been developed. Utilizing a template-assisted approach and capillary forces, particles were rapidly loaded and stabilized. The system employs a biocompatible alginate gel as a stabilizing matrix, facilitating the breakdown of the carrier in body fluids with the subsequent release of its nano-load, while also mitigating long-term accumulation in the lung.

View Article and Find Full Text PDF

Objectives: "Submicron hiatus" represents a potential space between the base of the collagenous network and the mineralized dentin when it is acid etched for bonding. This study evaluated the relationship between microtensile bond strength (microTBS) and occurrence of submicron hiatus formations at the resin-dentin interface using the same specimens.

Methods: Resin-dentin bonded micro-specimens (sticks with a size of 300 microm x 300 microm x 8mm) were prepared using one of two material combinations (group I: Syntac Classic/Tetric Ceram Cavifil: n=51 group II: Prime & Bond NT/Tetric Ceram Cavifil: n=56).

View Article and Find Full Text PDF