After birth, the immune system is challenged by numerous elements of the extrauterine environment, reflected in fluctuations of inflammatory markers. The concentrations of these markers in the first month of life are associated with the future performance of dairy youngstock. It is thought that bacterial genera colonizing the calf intestinal tract can cause inflammation and thus affect their host's performance via immunomodulation.
View Article and Find Full Text PDFBackground: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics.
Results: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed.
In the present study, relationships between the intestinal microbiota and innate immunity response, acute cryptosporidiosis, and weight gain in female dairy calves were investigated. A total of 112 calves born during a natural outbreak of cryptosporidiosis on one dairy farm was included in the study. Microbiota composition was analysed by means of 16S ribosomal RNA gene amplicon sequencing from faecal samples collected during the second week of life, while the status of Cryptosporidium spp.
View Article and Find Full Text PDFBackground: The maternal microbiota affects the development of the offspring by microbial metabolites translocating to the fetus. To reveal the spectrum of these molecular mediators of the earliest host-microbe interactions, we compared placenta, fetal intestine and brain from germ-free (GF) and specific pathogen free (SPF) mouse dams by non-targeted metabolic profiling.
Results: One hundred one annotated metabolites and altogether 3680 molecular features were present in significantly different amounts in the placenta and/or fetal organs of GF and SPF mice.
The development of a healthy intestinal immune system requires early microbial exposure. However, it remains unclear whether microbial exposure already begins at the prenatal stage. Analysis of such low microbial biomass environments are challenging due to contamination issues.
View Article and Find Full Text PDF