Publications by authors named "T Pereg-Barnea"

Here we provide a picture of transport in quantum well heterostructures with a periodic driving field in terms of a probabilistic occupation of the topologically protected edge states in the system. This is done by generalizing methods from the field of photon-assisted tunneling. We show that the time dependent field dresses the underlying Hamiltonian of the heterostructure and splits the system into sidebands.

View Article and Find Full Text PDF

Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable T enhancement (up to 50%) relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane.

View Article and Find Full Text PDF

We examine a contact between a superconductor whose order parameter changes sign across the Brillioun zone, and an ordinary, uniform-sign superconductor. Within a Ginzburg-Landau-type model, we find that if the barrier between the two superconductors is not too high, the frustration of the Josephson coupling between different portions of the Fermi surface across the contact can lead to surprising consequences. These include time-reversal symmetry breaking at the interface and unusual energy-phase relations with multiple local minima.

View Article and Find Full Text PDF

We study the scattering of waves off a potential step in deformed honeycomb lattices. For deformations below a critical value, perfect Klein tunneling is obtained; i.e.

View Article and Find Full Text PDF

A graphene nanoribbon with zigzag edges has a gapped magnetic ground state with an antiferromagnetic interedge superexchange interaction. We present a theory based on asymptotic properties of the Dirac-model ribbon wave function which predicts W-2 and W-1 ribbon-width dependencies for the superexchange interaction strength and the charge gap, respectively. We find that, unlike the case of conventional atomic-scale superexchange, opposite spin orientations on opposite edges of the ribbon are favored by both kinetic and interaction energies.

View Article and Find Full Text PDF