Publications by authors named "T Paprotka"

Analysis of cell-free DNA methylation (cfDNAme), alone or combined with CA125, could help to detect ovarian cancers earlier and may reduce mortality. We assessed cfDNAme in regions of ZNF154, C2CD4D and WNT6 via targeted bisulfite sequencing in diagnostic and early detection (preceding diagnosis) settings. Diagnostic samples were obtained via prospective blood collection in cell-free DNA tubes in a convenience series of patients with a pelvic mass.

View Article and Find Full Text PDF

Background: The composition of the microbiome plays an important role in human health and disease. Whether there is a direct association between the cervicovaginal microbiome and the host's epigenome is largely unexplored.

Results: Here we analyzed a total of 448 cervicovaginal smear samples and studied both the DNA methylome of the host and the microbiome using the Illumina EPIC array and next-generation sequencing, respectively.

View Article and Find Full Text PDF

Background: Ex vivo drug screening refers to the out-of-body assessment of drug efficacy in patient derived vital tumor cells. The purpose of these methods is to enable functional testing of patient specific efficacy of anti-cancer therapeutics and personalized treatment strategies. Such approaches could prove powerful especially in context of rare cancers for which demonstration of novel therapies is difficult due to the low numbers of patients.

View Article and Find Full Text PDF

Next generation sequencing is in the process of evolving from a technology used for research purposes to one which is applied in clinical diagnostics. Recently introduced high throughput and benchtop instruments offer fully automated sequencing runs at a lower cost per base and faster assay times. In turn, the complex and cumbersome library preparation, starting with isolated nucleic acids and resulting in amplified and barcoded DNA with sequencing adapters, has been identified as a significant bottleneck.

View Article and Find Full Text PDF

Chronic granulomatous disease (CGD) is a rare inherited disorder of phagocytic cells. We report the initial results of nine severely affected X-linked CGD (X-CGD) patients who received ex vivo autologous CD34 hematopoietic stem and progenitor cell-based lentiviral gene therapy following myeloablative conditioning in first-in-human studies (trial registry nos. NCT02234934 and NCT01855685).

View Article and Find Full Text PDF