Purpose: To report clinical and genetic characteristics of familial exudative vitreoretinopathy (FEVR) in the Finnish population.
Methods: Detailed clinical and genetic data of 35 individuals with heterozygous pathogenic variants in FZD4 were gathered and analysed.
Results: Thirty-two individuals with FZD4 c.
There is increasing interest to employ in vitro transcriptomics experiments in toxicological testing, for example to determine a point-of-departure (PoD) for chemical safety assessment. However current practices to derive PoD tend to utilise a single exposure time despite the importance of exposure time on the manifestation of toxicity caused by a chemical. Therefore it is important to investigate both concentration and exposure time to determine how these factors affect biological responses, and as a consequence, the derivation of PoDs.
View Article and Find Full Text PDFAmongst omics technologies, metabolomics should have particular value in regulatory toxicology as the measurement of the molecular phenotype is the closest to traditional apical endpoints, whilst offering mechanistic insights into the biological perturbations. Despite this, the application of untargeted metabolomics for point-of-departure (POD) derivation via benchmark concentration (BMC) modelling is still a relatively unexplored area. In this study, a high-throughput workflow was applied to derive PODs associated with a chemical exposure by measuring the intracellular metabolome of the HepaRG cell line following treatment with one of four chemicals (aflatoxin B, benzo[a]pyrene, cyclosporin A, or rotenone), each at seven concentrations (aflatoxin B, benzo[a]pyrene, cyclosporin A: from 0.
View Article and Find Full Text PDFAims: Atrial fibrillation (AF) is becoming increasingly common. Traditional cardiovascular risk factors (CVRF) do not explain all AF cases. Blood-based biomarkers reflecting cardiac injury such as high-sensitivity troponin I (hsTnI) may help close this gap.
View Article and Find Full Text PDF