The pathological hallmark of Parkinson's disease (PD) is the formation of Lewy bodies containing aggregated alpha-synuclein (α-syn). Although PD is associated with these distinct histological changes, other pathological features such as microvascular alterations have been linked to neurodegeneration. These changes need to be investigated as they create a hostile brain microenvironment and may contribute to the development and progression of the disease.
View Article and Find Full Text PDFPoststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)-expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown.
View Article and Find Full Text PDFMicrovascular changes have recently been described for several neurodegenerative disorders, including Huntington's disease (HD). HD is characterized by a progressive neuronal cell loss due to a mutation in the Huntingtin gene. However, the temporal and spatial microvascular alterations in HD remain unclear.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2018
Brain pericytes not only maintain the anatomical, biochemical and immune blood-brain barrier, but display features of mesenchymal stem cells (MSCs) in vitro. MSCs have pro-regenerative properties attributed to their secretome. However, whether also brain pericytes possess such pro-regenerative capacities is largely unknown.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease where the degeneration of the nigrostriatal pathway leads to specific motor deficits. There is an unmet medical need for regenerative treatments that stop or reverse disease progression. Several growth factors have been investigated in clinical trials to restore the dopaminergic nigrostriatal pathway damaged in PD.
View Article and Find Full Text PDF