Publications by authors named "T P Weihs"

The development of systems to measure and optimize emerging energetic material performance is critical for Chemical Warfare Agent (CWA) defeat. In order to assess composite metal powder efficacy on CWA simulant defeat, this study documents a combination of two spectroscopic systems designed to monitor the decomposition of a CWA simulant and temperature rises due to combusting metal powders simultaneously. The first system is a custom benchtop Polygonal Rotating Mirror Infrared Spectrometer (PRiMIRS) incorporating a fully customizable sample cell to observe the decomposition of Diisopropyl Methyl Phosphonate (DIMP) as it interacts with combusting composite metal particles.

View Article and Find Full Text PDF

The response of metals and their microstructures under extreme dynamic conditions can be markedly different from that under quasistatic conditions. Traditionally, high strain rates and shock stresses are achieved using cumbersome and expensive methods such as the Kolsky bar or large spall experiments. These methods are low throughput and do not facilitate high-fidelity microstructure-property linkages.

View Article and Find Full Text PDF

Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells.

View Article and Find Full Text PDF

The resolution achievable with the established super-resolution fluorescence nanoscopy methods, such as STORM or STED, is in general not sufficient to resolve protein complexes or even individual proteins. Recently, minimal photon flux (MINFLUX) nanoscopy has been introduced that combines the strengths of STED and STORM nanoscopy and can achieve a localization precision of less than 5 nm. We established a generally applicable workflow for MINFLUX imaging and applied it for the first time to a bacterial molecular machine, i.

View Article and Find Full Text PDF

Cells assemble macromolecular complexes into scaffoldings that serve as substrates for catalytic processes. Years of molecular neurobiology research indicate that neurotransmission depends on such optimization strategies. However, the molecular topography of the presynaptic active zone (AZ), where transmitter is released upon synaptic vesicle (SV) fusion, remains to be visualized.

View Article and Find Full Text PDF