Intervertebral disc degeneration is commonly associated with back and neck pain, and standard surgical treatments do not restore spine function. Replacement of the degenerative disc with a living, tissue-engineered construct has the potential to restore normal structure and function to the spine. Toward this goal, our group developed endplate-modified disc-like angle-ply structures (eDAPS) that recapitulate the native structure and function of the disc.
View Article and Find Full Text PDFReversible adhesives for wound care improve patient experiences by permitting reuse and minimizing further tissue injury. Existing reversible bandages are vulnerable to water and can undergo unwanted deformation during removal and readdressing procedures. Here, a biocompatible, multilayered, reversible wound dressing film that conforms to skin and is waterproof is designed.
View Article and Find Full Text PDFBackground: Cadaveric intervertebral discs are often studied for a variety of research questions, and outcomes are interpreted in the in vivo context. Unfortunately, the cadaveric disc does not inherently represent the LIVE condition, such that the disc structure (geometry), composition (T2 relaxation time), and mechanical function (opening pressure, OP) measured in the cadaver do not necessarily represent the in vivo disc.
Methods: We conducted serial evaluations in the Yucatan minipig of disc geometry, T2 relaxation time, and OP to quantify the changes that occur with progressive dissection and used axial loading to restore the in vivo condition.