Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements.
View Article and Find Full Text PDFParkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies.
View Article and Find Full Text PDFThe Göttingen minipig is a large animal with a gyrencephalic brain that expresses -complex behavior, making it an attractive model for Parkinson's disease research. Here, we investigate the temporal evolution of presynaptic dopaminergic function for 14 months after injections of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the minipig using a multi-tracer longitudinal positron emission tomography (PET) design. We injected seven sedated minipigs with 1-2 mg/kg of MPTP, and two with saline, three times a week over four weeks.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is characterized by Lewy body and neurite pathology associated with dopamine terminal dysfunction. Clinically, it is associated with motor slowing, rigidity, and tremor. Postural instability and pain are also features.
View Article and Find Full Text PDF