We present results from an atomic clock that employs a beam of cold Rb atoms and spatially separated (Ramsey) coherent population trapping interrogation of the hyperfine clock transition at 6.834 GHz. The cold atomic beam is generated through the use of a 2D-magnetooptical trap.
View Article and Find Full Text PDFWe report a high-accuracy direct measurement of the blackbody radiation shift of the 133Cs ground-state hyperfine transition. This frequency shift is one of the largest systematic frequency biases encountered in realizing the current definition of the International System of Units (SI) second. Uncertainty in the blackbody radiation frequency shift correction has led to its being the focus of intense theoretical effort by a variety of research groups.
View Article and Find Full Text PDFWe demonstrate a variation of pump-probe spectroscopy that is particularly useful for laser frequency stabilization. The polarization-enhanced absorption spectroscopy (POLEAS) signal provides a significant improvement in signal-to-noise ratio over saturated absorption spectroscopy (SAS) for the important and commonly used atomic cycling transitions. The improvements can directly increase the short-term stability of a laser frequency lock, given sufficient servo loop bandwidth.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2010
This paper describes the new twin laser-cooled Cs fountain primary frequency standards NIST-F2 and ITCsF2, and presents some of their design features. Most significant is a cryogenic microwave interrogation region which dramatically reduces the blackbody radiation shift. We also present a preliminary accuracy evaluation of IT-CsF2.
View Article and Find Full Text PDFWe experimentally investigate an optical clock based on ;{171}Yb (I = 1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4 x 10;{-16}, limited principally by uncertainty in the blackbody radiation Stark shift.
View Article and Find Full Text PDF