From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors.
View Article and Find Full Text PDFPhosphomethylpyrimidine synthase (ThiC) catalyzes the conversion of AIR to the thiamin pyrimidine HMP-P. This reaction is the most complex enzyme-catalyzed radical cascade identified to date, and the detailed mechanism has remained elusive. In this paper, we describe the trapping of five new intermediates that provide snapshots of the ThiC reaction coordinate and enable the formulation of a revised mechanism for the ThiC-catalyzed reaction.
View Article and Find Full Text PDFThe role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation.
View Article and Find Full Text PDF