Thin films of Bi-based superconductors, highly c-axis oriented, were deposited on single crystalline substrates of SrTiO3, LaAlO3, and MgO using a pulsed laser deposition technique with a Bi-2223 target of nominal composition Bi1.75Pb0.25Sr2Ca2Cu3O10±δ prepared by the solid state reaction method.
View Article and Find Full Text PDFBackground: Mesenchymal stem cell-based treatments are now emerging as a therapy for corneal epithelial damage. Although bone marrow, adipose tissue and umbilical cord blood are the main sources of mesenchymal stem cells (MSCs), other tissues like the peripheral blood also harbor mesenchymal-like stem cells called peripheral blood-derived mononuclear cells (PBMNCs). These blood derived stem cells gained a lot of attention due to its minimally invasive collection and ease of isolation.
View Article and Find Full Text PDFIndian J Dent Res
November 2019
Background And Objective: Various types of osteoconductive graft materials are used for the management of alveolar bone defects arising out of periodontal disease. Inorganic, self-setting, bioactive bone cements are suggested to be most appropriate because they can conformally fill the bone defect and resorb progressively along with the regeneration of the host site. A new calcium sulfate-based bioactive bone cement (BioCaS) is developed, having simplicity and effectiveness for bone grafting applications.
View Article and Find Full Text PDFLimbal stem cell deficiency (LSCD) is the loss of limbal stem cells that reside in the corneoscleral junction resulting in vision loss or blindness. Bilateral LSCD is usually treated by allogeneic corneal transplantation, with instances of tissue rejection or failure in long-term follow-up. This study aims to use adipose mesenchymal stem cells (ASC) as an alternative autologous cell source for treating bilateral limbal deficiency conditions.
View Article and Find Full Text PDFBioinspir Biomim
November 2019
Cell imprint lithography (CIL) or cell replication plays a vital role in fields like biomimetic smart culture substrates, bone tissue engineering, cell guiding, cell adhesion, tissue engineering, cell microenvironments, tissue microenvironments, cell research, drug delivery, diagnostics, therapeutics and many other applications. Herein we report a new formulation of superconductive carbon black photopolymer composite and its characterization towards a CIL process technique. In this article, we demonstrated an approach of using a carbon nanoparticle-polymer composite (CPC) for patterning cells.
View Article and Find Full Text PDF