Publications by authors named "T Oegema"

Aggrecan is the prominent proteoglycan in cartilage and is modified with approximately 100 chondroitin sulfate (CS) chains through a tetrasaccharide linkage structure. In osteoarthritis (OA), the viscoelastic properties of cartilage are compromised on both the quantity and integrity of aggrecan core protein expressed as well as reduced overall CS chain length. Herein, we postulated that chronic low-level inflammation may also contribute to OA progression by promoting regulatory mechanisms in early CS biosynthesis that yield incomplete linkage structures on aggrecan.

View Article and Find Full Text PDF

Even with current treatments of acute joint injuries, more than 40% of people who suffer significant ligament or meniscus tears, or articular surface injuries, will develop osteoarthritis (OA). Correspondingly, 12% or more of all patients with lower extremity OA have a history of joint injury. Recent research suggests that acute joint damage that occurs at the time of an injury initiates a sequence of events that can lead to progressive articular surface damage.

View Article and Find Full Text PDF

Objective: Because P188 poloxamer is effective in promoting cell survival in models of acute trauma, the objectives were to understand the mechanism of its action focusing on glycogen synthase kinase-3 (GSK3) activation, interleukin-6 (IL-6), and p38 signaling.

Design: Sixteen normal human tali were impacted using a 4-mm diameter indenter with an impulse of 1 Ns. Eight-millimeter cartilage plugs containing the 4-mm impacted core and 4-mm adjacent nonimpacted ring were removed and cultured with or without P188.

View Article and Find Full Text PDF

Decorin is known to influence the size of collagen fibrils in ligaments and tendons and it has been hypothesized to provide a structural link between collagen fibrils in connective tissues, including cartilage. Coincidently, mechanical properties of skin, ligament, and tendons are altered in decorin knockout mice, suggesting it may influence the structural properties of tissue or tissue matrix organization. To further examine the role of decorin in the extracellular matrix development and subsequent material properties of cartilage, tissue (neocartilage) was grown in a 3D culture model using a pure population of genetically modified chondrocytes stably overexpressing decorin (DCN) or decorin lacking dermatan sulfate (MDCN).

View Article and Find Full Text PDF