Mathematical modeling of somatic evolution, a process impacting both host cells and microbial communities in the human body, can capture important dynamics driving carcinogenesis. Here we considered models for esophageal adenocarcinoma (EAC), a cancer that has dramatically increased in incidence over the past few decades in Western populations, with high case fatality rates due to late-stage diagnoses. Despite advancements in genomic analyses of the precursor Barrett's esophagus (BE), prevention of late-stage EAC remains a significant clinical challenge.
View Article and Find Full Text PDFClin Gastroenterol Hepatol
April 2024
Background & Aims: The aim of this study was to characterize baseline morphologic features of crypts in nondysplastic Barrett's esophagus and correlate them with DNA content abnormalities and risk of progression to high-grade dysplasia (HGD) or esophageal adenocarcinoma (EAC).
Methods: The morphologic features of nondysplastic crypts in baseline biopsy specimens from 212 BE patients (2956 biopsy specimens) were graded histologically using a 4-point scale (crypt atypia levels, 0-3). DNA content abnormalities were detected using flow cytometry.