Publications by authors named "T Nikolic"

Background/objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity.

View Article and Find Full Text PDF
Article Synopsis
  • Psychotic and mood disorders are interconnected, suggesting that they may exist on a continuum rather than as separate categories.
  • A study on 143 patients with schizophrenia and bipolar disorder revealed that lower levels of the cytokine TGF-β were linked to more severe symptoms and a higher likelihood of psychotic episodes.
  • The findings suggest that immune dysregulation, particularly involving TGF-β, could play a shared role in both disorders, which may influence how we classify and understand their clinical presentations.
View Article and Find Full Text PDF

Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins.

View Article and Find Full Text PDF

Increased immune-inflammatory activation has been repeatedly linked to etiopathogenesis and the progression of both major depressive disorder (MDD) and bipolar depression (BD). We explore the role of soluble intercellular cell adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in diagnostic differentiation and disorder progression in patients with MDD and BD. Serum levels of sICAM-1 and sVCAM-1 were measured in 137 patients (MDD = 93 and BD = 44) and compared with 73 healthy controls.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3).

View Article and Find Full Text PDF