Publications by authors named "T Neger"

Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input.

View Article and Find Full Text PDF

The particle density of ground-state chromium atoms within one cross section of an arc plasma was measured spatially resolved, and the spatial distribution of the line shape of the chromium resonance line at 427.48 nm was partly determined. The measurements were performed with a newly developed setup that combines the methods of resonance interferometry and refractive tomography.

View Article and Find Full Text PDF

Laser ignition has been discussed widely as a potentially superior ignition source for technical appliances such as internal combustion engines. Ignition strongly affects overall combustion, and its early stages in particular have strong implications on subsequent pollutant formation, flame quenching, and extinction. Our research here is devoted to the experimental investigation of the early stages of laser-induced ignition of CH4/air mixtures up to high pressures.

View Article and Find Full Text PDF

We report the fabrication and characterization of optically pumped multiple grating distributed feedback lasers in dye doped organic thin films. Each multiplexed laser structure is inscribed at a different angle in the sample plane and possesses a unique emission wavelength. The polarization sensitivity of these structures with respect to the pumping light is exploited to enable simple and high-speed switching of the device emission wavelength.

View Article and Find Full Text PDF

A new setup for plasma diagnostics is presented that is based on real-time holographic interferometry. The hologram is used as a holographic optical element (HOE) that combines the properties of a hologram, of a lens, and of a grating simultaneously. The HOE is responsible for the formation of the interference pattern, and, in addition, acts as an imaging element and prevents most of the plasma radiation from reaching the interferogram detection system.

View Article and Find Full Text PDF