Achieving durable clinical responses to immune checkpoint inhibitors remains a challenge. Here, we demonstrate that immunotherapy with anti-CTLA-4 and its combination with anti-PD-1 rely on tumor cell-intrinsic activation of the cytosolic RNA receptor RIG-I. Mechanistically, tumor cell-intrinsic RIG-I signaling induced caspase-3-mediated tumor cell death, cross-presentation of tumor-associated antigen by CD103 dendritic cells, subsequent expansion of tumor antigen-specific CD8 T cells, and their accumulation within the tumor tissue.
View Article and Find Full Text PDFThe lung cancer stem cell (LuCSC) model comprises an attractive framework to explore acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Here, we used NSCLC cell line model to translate cellular heterogeneity into tractable populations to understand the origin of lung cancers and drug resistance. The epithelial LuCSCs, presumably arising from alveolar bipotent stem/progenitor cells, were lineage naïve, noninvasive, and prone to creating aggressive progeny expressing AT2/AT1 markers.
View Article and Find Full Text PDFResistance to cell death and evasion of immunosurveillance are major causes of cancer persistence and progression. Tumor cell-intrinsic activation of the RNA receptor retinoic acid-inducible gene-I (RIG-I) can trigger an immunogenic form of programmed tumor cell death, but its impact on antitumor responses remains largely unexplored. We show that activation of intrinsic RIG-I signaling induces melanoma cell death that enforces cross-presentation of tumor-associated antigens by bystander dendritic cells.
View Article and Find Full Text PDFBackground: Antibody-mediated targeting of regulatory T cell receptors such as CTLA-4 enhances antitumor immune responses against several cancer entities including malignant melanoma. Yet, therapeutic success in patients remains variable underscoring the need for novel combinatorial approaches.
Methods: Here we established a vaccination strategy that combines engagement of the nucleic acid-sensing pattern recognition receptor RIG-I, antigen and CTLA-4 blockade.