Publications by authors named "T Nazarova"

The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia.

View Article and Find Full Text PDF

Forage grain contamination with aflatoxin B1 (AFB1) is a global problem, so its detoxification with the aim of providing feed safety and cost-efficiency is still a relevant issue. AFB1 degradation by microbial enzymes is considered to be a promising detoxification approach. In this study, we modified an previously developed GS115 expression system using a chimeric signal peptide to obtain a new recombinant producer of extracellular AFB1 oxidase (AFO) from (the yield of 0.

View Article and Find Full Text PDF

Background: Previous studies have demonstrated the formation of stable complexes between inorganic pyrophosphatase (PPase) and three other Escherichia coli enzymes - cupin-type phosphoglucose isomerase (cPGI), class I fructose-1,6-bisphosphate aldolase (FbaB) and l-glutamate decarboxylase (GadA).

Methods: Here, we determined by activity measurements how complex formation between these enzymes affects their activities and oligomeric structure.

Results: cPGI activity was modulated by all partner proteins, but none was reciprocally affected by cPGI.

View Article and Find Full Text PDF

Background: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated.

Methods: The known three-dimensional structure of E.

View Article and Find Full Text PDF

An approach to manage seed-transmitted Fusarium crown-foot-root rot (FCR, spp.) and common root rot (CRR, ) on wheat, avoiding environmental risks of chemicals, is seed treatments with microbial metabolites. strain FS-94 that induces resistance to tomato wilt was shown by this study to be a source of non-fungitoxic wheat-protecting metabolites, which were contained in a mycelium extract purified by gel-chromatography and ultrafiltration.

View Article and Find Full Text PDF