During prolonged hypoxic conditions, endothelial cells change their gene expression to adjust to the low oxygen environment. This process is mainly regulated by the hypoxia-inducible factors, HIF-1α and HIF-2α. Although endothelial cells do not form sprouts during prolonged hypoxic culturing, silencing of HIF-2α partially restores sprout formation.
View Article and Find Full Text PDFBackground: During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis.
Objectives: We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling.
Background: The physiological demands of pregnancy on the maternal cardiovascular system can catapult women into a metabolic syndrome that predisposes to atherosclerosis in later life. We sought to identify the nature of the epigenomic changes associated with the increased cardiovascular disease (CVD) risk in adult women following pre-eclampsia.
Findings: We assessed the genome wide epigenetic profile by methyl-C sequencing of monozygotic parous twin sister pairs discordant for a severe variant of pre-eclampsia.
The α1,2-fucosyltransferase activity in pancreatic tumors is much lower compared to normal pancreatic tissue. Here we show that hypoxia inducible factor (HIF) 1α is constitutively expressed in the pancreatic cancer cell lines Pa-Tu-8988S and Pa-Tu-8988T and suppresses the expression of the α1,2-fucosyltransferase genes FUT1 and FUT2. Down regulation of HIF-1α expression resulted in elevated FUT1 and FUT2 transcript levels and an increased expression of α1,2-fucosylated glycan structures on the surface of these cells.
View Article and Find Full Text PDF