Publications by authors named "T Narayanan"

Ultra-low magnetic field sensing is emerging as a tool for materials' diagnostics, particularly for the operando studies of electrochemical systems. A magnetic metrology system having the capability of sensing fields as low as ∼1.88 pT has been setup for such studies using a commercial atomic magnetometer.

View Article and Find Full Text PDF

The regulation of heart function is attributed to a dual filament mechanism: i) the Ca-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis.

View Article and Find Full Text PDF

Contraction of heart muscle requires activation of both the actin and myosin filaments. The mechanism of myosin filament activation is unknown, but the leading candidate hypothesis is direct mechano-sensing by the filaments. Here, we tested this hypothesis by activating intact trabeculae from rat heart by electrical stimulation under different loads and measuring myosin filament activation by X-ray diffraction.

View Article and Find Full Text PDF

In the present work, the ultrafast nonlinear optical (NLO) response of some molybdenum disulfide (MoS), fluorinated graphene (FG), and FG/MoS heterostructure thin films was studied using the -scan and optical Kerr effect techniques employing femtosecond laser pulses at different excitation wavelengths (i.e., 400, 570, 610, 660, 800, and 1200 nm).

View Article and Find Full Text PDF

Adenosine triphosphate (ATP), ubiquitous in all living organisms, is conventionally recognized as a fundamental energy currency essential for a myriad of cellular processes. While its traditional role in energy metabolism requires only micromolar concentrations, the cellular content of ATP has been found to be significantly higher at the millimolar level. Recent studies have attempted to correlate this higher concentration of ATP with its nonenergetic role in maintaining protein homeostasis, leaving the investigation of ATP's nontrivial activities in biology an open question.

View Article and Find Full Text PDF