Int J Comput Assist Radiol Surg
December 2024
Purpose: In image-guided surgery for breast cancer, the representation of the breast deformation between planning and surgery plays a key role. The breast deforms significantly and behaves as a fluid with some constraints. Concretely, the deep fat layer in the breast deforms fluidly due to its incomplete fixation to the chest wall, while the anchoring structures by fascia avoid excessive deformation.
View Article and Find Full Text PDFIdentifying the potential side effects for the interested drugs can help reduce harm to patients caused by drugs in clinical use and decrease the risk of drug development failure. Multiple functionally similar drugs often have multiple similar side effects, resulting in the closed relationships among these nodes. However, most of previous methods did not completely encode the features from the biological perspective to mine the complex associations between the drugs and side effects.
View Article and Find Full Text PDFIdentifying drug-related microbes may help us explore how the microbes affect the functions of drugs by promoting or inhibiting their effects. Most previous methods for the prediction of microbe-drug associations focused on integrating the attributes and topologies of microbe and drug nodes in Euclidean space. The heterogeneous network composed of microbes and drugs has a hierarchical structure, and the hyperbolic space is helpful for reflecting the structure.
View Article and Find Full Text PDFIdentifying new relevant long noncoding RNAs (lncRNAs) for various human diseases can facilitate the exploration of the causes and progression of these diseases. Recently, several graph inference methods have been proposed to predict disease-related lncRNAs by exploiting the topological structure and node attributes within graphs. However, these methods did not prioritize the target lncRNA and disease nodes over auxiliary nodes like miRNA nodes, potentially limiting their ability to fully utilize the features of the target nodes.
View Article and Find Full Text PDFGraph convolutional neural networks (GCN) have shown the promise in medical image segmentation due to the flexibility of representing diverse range of image regions using graph nodes and propagating knowledge via graph edges. However, existing methods did not fully exploit the various attributes of image nodes and the context relationship among their attributes. We propose a new segmentation method with multi-similarity view enhancement and node attribute context learning (MNSeg).
View Article and Find Full Text PDF