Publications by authors named "T Nagaraju"

The production of fisheries and shrimp has been twice every 10 years for the previous five decades, making it the most rapidly expanding food industry. This growth is due to intensive farming and the conversion of agriculture into aquaculture in many parts of South Asia. Furthermore, intensive aquaculture generates positive economic growth but leads to environmental degradation without proper monitoring.

View Article and Find Full Text PDF

Water quality surveillance is tough, and a specific timely management is necessary for the inland aquaculture ponds and ecology as well. Real time quality monitoring involves the study of numerous parameters includes physical (turbidity, temperature, and specific conductivity), chemical (pH, calcium, manganese, chlorides, iron, biochemical oxygen demand), and biological (bacteria and algae). It is also crucial to recognize the inter-dependence among the parameters.

View Article and Find Full Text PDF

Intensive aquaculture practices generate highly polluted organic effluents such as biological oxygen demand (BOD), alkalinity, total ammonia, nitrates, calcium, potassium, sodium, iron, and chlorides. In recent years, Inland aquaculture ponds in the western delta region of Andhra Pradesh have been intensively expanding and are more concerned about negative environmental impact. This paper presents the water quality analysis of aquaculture waters in 64 random locations in the western delta region of Andhra Pradesh.

View Article and Find Full Text PDF

Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells. Assembly of mitotic chromosomes involves DNA looping by condensin and chromatin compaction by global histone deacetylation. Although condensin confers mechanical resistance to spindle pulling forces, it is not known how histone deacetylation affects material properties and, as a consequence, segregation mechanics of mitotic chromosomes.

View Article and Find Full Text PDF

Herpesviruses must amplify their DNA to load viral particles and they do so in replication compartments. The development and functions of replication compartments during DNA amplification are poorly understood, though. Here we examine 2 functionally distinct replicons in the same cells to dissect DNA amplification within replication compartments.

View Article and Find Full Text PDF