Publications by authors named "T N Sarkisova"

A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of , and one individual of .

View Article and Find Full Text PDF

Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes.

View Article and Find Full Text PDF

A virome screen was performed on a new breeding line, KB1, of blackcurrant. Rhabdovirus-like particles were observed by electron microscopy in ultrathin sections of flower stalks, and the complete genome sequence of a novel virus, provisionally named blackcurrant rhabdovirus 2 (BCRV2), was determined and verified using high-throughput sequencing. The genomic organization of BCRV2 was characteristic of cytorhabdoviruses (family ) and included seven genes: 3 ́- N-P´-P-P3-M-G-L -5 ́.

View Article and Find Full Text PDF

A lichen body is formed most often from green alga cells trapped in a net of ascomycetous fungi and accompanied by endolichenic or parasitic fungi, other algae, and symbiotic or free-living bacteria. The lichen's microcosmos is inhabited by mites, insects, and other animals for which the lichen is a source of food or a place to live. Novel, four-segmented dsRNA viruses were detected in saxicolous and lichens.

View Article and Find Full Text PDF

This study reports the complete genomic sequence of a novel virus isolated from red clover. According to its genomic organization, its similarity to luteoviruses, and a greater than 10% difference in all genes, this virus isolate likely represents a new luteovirus species. As seen in nectarine stem pitting-associated virus (NSPaV) and NSPaV-South Korea (SK) luteoviruses, it differs from typical luteoviruses through the absence of ORF3a and ORF4 encoding movement proteins.

View Article and Find Full Text PDF