Publications by authors named "T N Parashar"

A common approach to assess the nature of energy conversion in a classical fluid or plasma is to compare power densities of the various possible energy conversion mechanisms. A leading research area is quantifying energy conversion for systems that are not in local thermodynamic equilibrium (LTE), as is common in a number of fluid and plasma systems. Here we introduce the "higher-order nonequilibrium term" (HORNET) effective power density, which quantifies the rate of change of departure of a phase space density from LTE.

View Article and Find Full Text PDF

The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in-depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind.

View Article and Find Full Text PDF

Patients with early breast cancer are affected by metastasis to axillary lymph nodes. Metastasis to these nodes is crucial for staging and quality of surgery. Sentinel Lymph Node Biopsy that is currently used to assess lymph node metastasis is not effective.

View Article and Find Full Text PDF

Reconnection and turbulence are two of the most commonly observed dynamical processes in plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy in the two systems by analyzing the generalization of the von Kármán Howarth equations for Hall magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer rates.

View Article and Find Full Text PDF

Curcumin is known for its anticancer properties, but its clinical application is limited due to its poor bioavailability and chemical stability. In this study we report the curcumin derivative, ST03 (1,2-bis[(3E,5E)-3,5-bis[(2-chlorophenyl)methylene]-4-oxo-1-piperidyl]ethane-1,2-dione) exhibits ∼ 14 fold better bioavailability compared to curcumin and is detectable in plasma up to 12 h. ST03 induces ROS, activates the intrinsic apoptotic pathway as evident by disruption of mitochondrial membrane potential, and induction of proapoptotic proteins in ovarian cancer lines PA1 and A2780.

View Article and Find Full Text PDF